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A theory of correlation dimension for
stationary time seriesj

By CoLLEEN D. CUTLER

Department of Statistics and Actuarial Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 8G1
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We develop a formal theory of correlation dimension for a class of stationary
time series that includes both deterministic outputs and gaussian processes with
continuous paths. This theory enables us to completely analyse correlation di-
mension in gaussian processes via spectral methods. Our approach plus recent
results on the convergence behaviour of the sample correlation integral are then
used to re-examine the behaviour of gaussian power-law coloured noise. We show
that the finite correlation dimension observed by Osborne & Provenzale (1989)
is a local quantity entirely due to the non-ergodicity of the simulation model.
We also show that non-ergodic and weakly ergodic finite-dimensional dynamical
systems (such as the simple circle map) exhibit the same phenomenon.
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1. Introduction

In this paper we propose a formal definition and theory of correlation dimension
for a class of strictly stationary real-valued time series with continuous paths.
This class encompasses those time series generated by smooth functionals of in-
variant finite-dimensional dynamical systems (the so-called deterministic outputs,
in which case our theory produces the usual results) but also includes more gen-
eral time series generated by other means. For example, we verify that our class
also includes all stationary gaussian processes with continuous paths. We examine
the gaussian family in detail, and show how our approach clarifies some points in
the deterministic vs stochastic debate.
The chief motivation for this work was the important paper of Osborne &
P Provenzale (1989) (hereafter called OP, in the fashion of Theiler (1991)), in
B which it was demonstrated that, for certain random processes with power-law
spectra (often called coloured noise, and which can be taken to be gaussian), the

Al

< sequence of numerical estimates of the correlation dimension (obtained by suc-
> > cessively increasing the embedding dimension d) converge to a finite value which
@) : in fact coincides with the fractal dimension of the embedded sample path. This
ez = observation (which we call the OP phenomenon) was of particular significance
SSH @) because it contradicted a widely held assumption that correlation dimension es-
O timates obtained from stochastically generated time series would always increase
= w without bound as the embedding dimension increased. This unexpected result has
=
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344 C. D. Cutler

spawned a considerable literature devoted to increasingly sophisticated methods
of distinguishing stochastic time series from low-dimensional chaotic dynamics
(see, for example, Kaplan & Glass 1992; Kennel & Isabelle 1992; Provenzale et
al. 1992; Smith 1992; Theiler et al. 1992). Recent related statistical work can be
found in Cheng & Tong (1992).

Correlation dimension was initially introduced and defined (Grassberger &
Procaccia 1983, hereafter denoted GP) for IR%-valued data Xj, ..., X,, as a double

limit: log Cn(r) 1)

Vep = lim lim
r—0 n—oo log'r
where the statistic C,,(r) (which we call the sample correlation integral) was
defined to be the proportion of pairs of observations no more than distance r

apart. That is, L
Cn(r) = <2> > Iix-x0, <0 (1.2)
i=1 j<i
In this paper the symbols || || always denote the £ or ‘sup’ norm on IR®. The
statistic vgp in (1.1) is actually independent of the choice of norm, but we will
find the sup norm most convenient for computation, as well as the most easily
extendable to the case of random continuous functions.

In the case that the data takes the form of a real-valued time series {X (tx)}x
(and hence may either be a stochastic process or a functional of a finite-dimen-
sional dynamical system) the standard practice has been to attempt to recon-
struct the underlying dynamics by using the time-delay embedding method in
Packard et al. (1980) and Takens (1981). We assume that the reader is fully fa-
miliar with this procedure. Its adaptation to the case of correlation dimension,
applied to a single realization of a time series, is generally called the Grassberger—
Procaccia (GP) algorithm. The exper1mentahst constructs a sequence {V'?}, d =
1,2,... of correlation dimensions, where v$¥ is determined via (1.1) after group-
ing the original observations into vectors X ¥ = (X (t4), X (trs1); - - - » X (thra—1))
of length d and computing (1.2). The limit of this sequence

v = lim v (1.3)

is often called the correlation dimension of the time series, and, prior to OP,
was believed to indicate a deterministic output whenever it assumed a finite
value. We note that Takens’s (1981) embedding theorem is generally regarded as
the theoretical basis for the GP algorithm, although Takens’ theorem is not a
statement about single realizations of time series.

In this paper we depart from the preceding standard approach in two impor-
tant ways. First, in contrast to the GP method of definition, we adopt the more
traditional statistical viewpoint that it is valuable to define parameters of interest
in a manner independent of data, so that different methods of estimating the pa-
rameter (as well as different methods of obtaining data) can be compared for their
ability to reproduce the parameter. Hence our definition of correlation dimension,
both for random vectors and time series, is formulated in terms of probability
distributions rather than data. Second, we treat a time series as a single object
(a random continuous function) and make a definition of correlation dimension
which seems appropriate for such objects by extending the formal mathemati-
cal approach which can be taken for random vectors in IR? (see next section).

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

\\ \\

AL B

A
L

a

THE ROYAL A

J

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL /
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A theory of correlation dimension for stationary time series 345

This creates a significant difference in rationale between our approach and the
embedding technique — the latter evolved specifically as a way of reconstructing
dynamics under the assumption of an underlying deterministic system, whereas
our approach makes no such assumption on the time series. Thus our approach
leads to a rigorous definition of correlation dimension valid for a larger class of
stationary processes. This definition, coupled with recent results on the conver-
gence behaviour of the sample correlation integral (Pesin 1993; Serinko 1993q;
Aaronson et al. 1993), provides a simple explanation of the OP phenomenon, and
allows us to complete the discussion initiated by Theiler (1991). Our approach
also shows that the behaviour of power-law coloured noise is simply one illustra-
tion of a general behaviour common to non-ergodic and weakly ergodic systems.
We will demonstrate that uncoupled harmonic oscillators, as well as the simple
circle map T'(z) = (z + @) mod 1, exhibit the OP phenomenon.

2. A new approach to correlation dimension in time series

A formal mathematical approach to correlation dimension (and other fractal
dimensions) for distributions in IR? has already been taken by various authors;
see Cutler (1993) for an overview, also Pesin (1993) for alternatives. Given a
probability measure p on the Borel sets of IR?, we define the associated spatial
correlation integral C,(r) by

Culr) = px u{(z, y) € B* x B[}z — ylla < r}). (2.1)

That is, C,(r) represents the probability that two independent observations from
u are no more than distance r apart. This is portrayed descriptively by the

alternate notation C.(r)=P([|X - Y.< 7)), (2.2)

where X, Y are independent, identically distributed (11D) random vectors in IR,
each with distribution p. We note that the sample correlation integral defined
in (1.2) might be considered the ‘natural estimator’ of C,(r), even though the
vectors involved in obtaining (1.2) will generally be extracted from the same
realization of a time series and hence fail to be independent. The correlation

dimension of u is then defined to be
r—0 log'r

assuming this limit exists. It is well known that 0 < v < d.

This approach extends in the obvious way to the case of random continuous
functions with compact domain. Let 7" > 0 be fixed, and let C([0,7]) denote the
space of continuous real-valued functions on [0, 7] equipped with the sup norm:

o=yl = sup [a(t) = y(t)|. (24)

KRR

Then, given a probability distribution u on the Borel sets of C([0,T]), we define,
in analogy with (2.1) and (2.2), the associated spatial correlation integral by

Cr(r) = px u({(z,y) € C([0,T]) x C([0, Tz — yll. <r}),  (2:5)
which has the alternate description
Co(r) =P([IlX - Y, <7]), (2.6)

Phil. Trans. R. Soc. Lond. A (1994)
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346 C. D. Cutler

where X and Y are 11D random functions in C([0, 7)), each with distribution p. We
have used the notation C,(r), rather than C,(r), to emphasize the dependence
on the length of the time interval. The corresponding correlation dimension v, is
then obtained via (2.3).

In the case of stationary time series, the natural domain of definition will often
be [0,00) rather than [0,7]. Thus one might consider evaluating the distance
between two 1ID random functions over all ¢ > 0, using a uniform metric of the
form
dist(z,y) = min ( sup |z(t) —y(t)], 1) . (2.7)

0t<oo
However, this approach is undesirable, as in most instances we would expect to
find that the probability of two random functions staying uniformly close for all
time is actually zero. (This is in fact the case for chaotic dynamical systems, i.e.
systems with a positive Lyapunov exponent.) Instead we study the separation of
paths over bounded intervals, and restrict consideration to those processes for
which the value of the correlation dimension v, is independent of T

Definition 2.1. A process with stationary distribution x on C([0,00)) is said
to be time-length invariant with respect to correlation dimension if, for all T' > 0,
T' > 0, we have v, = v_,. This common value, which we denote by v_, will be
called the correlation dimension of the process.

We remark that we do not know if there exist stationary processes which are
not time-length invariant. There is a second relevant definition we can make which
will establish a clear link between our approach and (1.3):

Definition 2.2. Let {X(¢)}; be a strictly stationary process with invariant
distribution p on C([0,00)). Given a compact interval [0,T] with partition 0 =
to Lt < ... <ty < tgpr =T, let vy, 4, denote the correlation dimension
of the finite-dimensional distribution p,, . ., on IR?¢ corresponding to the vector
(X (t1),...,X(ta)). The process is said to be accessible with respect to correlation
dimension if, for every T > 0, we have limar_o ,,. .+, = V;, where AT =
max;<j<a+1 |t; — tj—1| is the mesh of the partition over [0,7].

We note that time-length invariance does not necessarily imply accessibility. If
X and Y are two independent realizations of the process, the assumed continuity
of paths does imply that

m - sup |X(t;) - Y ()| =X =Y, (2.8)

li
AT—0 t1,0.0ta

and hence that the corresponding spatial correlation integrals converge appropri-
ately

Al%m0 Ciy,..ta(r)=C.(r) foreach >0, (2.9)
where Cy, . ;,(r) is the spatial correlation integral of p,. .. .,. However, accessi-

bility further requires that we are able to interchange two limits, i.e. we must
assume that

(2.10)

AT—07r—0 log T r—0 AT—0 log r
The right-hand side of (2.10) is the desired quantity v,, while the lim sup of the

Phil. Trans. R. Soc. Lond. A (1994)
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A theory of correlation dimension for stationary time series 347

left-hand side will certainly always be bounded above by v,. Accessibility indi-
cates that the entire path behaviour over [0,7] can be approximated in a very
strong way by observations at a finite number of time points t4,...,t, for a suffi-
ciently fine partition. However, even in the absence of accessibility, a strong link
between the finite-dimensional distributions and the overall process is provided
by (2.9). As with time-length invariance, we do not know the size of the class of
accessible processes.

The remainder of this section is devoted to showing that both determinis-
tic outputs and gaussian processes are time-length invariant and accessible with
respect to correlation dimension; moreover, for deterministic outputs, this new
definition of correlation dimension coincides with the standard one (discussed
below) usually assigned to the underlying dynamical system.

A stationary finite-dimensional dynamical system on a smooth compact d-
dimensional manifold M is represented by a semigroup of mappings {¢;}:, t > 0,
@y : M — M, and an invariant distribution p* (i.e. p*p; ' = p* for each t) which
describes the distribution of initial conditions on M. Note that, by the Whitney
embedding theorem, there exists a minimal embedding dimension d* < 2d + 1
for which M can be viewed as a subset of IR* . In this case, the correlation
dimension of the system is typically defined to be the correlation dimension v*
of p*, computed via (2.2) and (2.3) with d* in place of d. In practice, however,
one rarely observes the actual system evolving on M, but observes instead a real-
valued functional X (t) = h(p;(X)) of the system; here h is a smooth mapping of
M into IR and X denotes a random initial condition (assumed selected according
to u*). The resulting process X (t) is strictly stationary with invariant distribution
p on C([0, 00)) having one-dimensional marginals yu; = p*h~'. Let v, denote the
correlation dimension of the functional process over [0,7]. Then we have:

Theorem 2.1. Suppose the semigroup {y;}; satisfies a Lipschitz condition
over compact time intervals, i.e. for each T' > 0 there exists A, such that

d*

sup |l¢i(2) = u(y)llar < Arllz —y
<t<T

for all ¢,y € M, where d* is the minimal embedding dimension of M.

(a) If h also satisfies a Lipschitz condition over M, then v, < v* for every
T>0.

(b) If h and the semigroup further satisfy the hypotheses of the Takens’s em-
bedding theorem, then the functional process {X(t)}; is time-length invariant
and accessible with v = v*.

Proof. (a) Suppose h satisfies a Lipschitz condition |h(z)—h(y)| < B||z—y||4
for all ¢,y € M. If X(t) = h(p:(X)) and Y (t) = h(p:(Y)) are two realizations
of the functional process with initial conditions X and Y, then

sup |X(¢) =Y (t)| < B sup [lpf(X) —pu(Y)lla < A, BI|X - Y

ST 0t

d* -

Hence, choosing X and Y to be IID initial conditions, each with distribution p*,
we get C.(r) = P([||X — Y|¢ < r/(AzB)]) = Cu(r/(A,B)) and the result
follows.

(b) Suppose h and the semigroup additionally satisfy the hypotheses of Tak-
ens’s (1981) embedding theorem. Given any T' > 0 and time points 0 < ¢; <

Phil. Trans. R. Soc. Lond. A (1994)
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348 C. D. Cutler

... < tp < T, it follows that the mapping & : M — IRF defined by &(z) =
(h(pi, (2)),- .., k(e (®))) is an embedding for all £ > d*. Since ® is bi-Lipschitz,
the correlation dimensions of x* and the image measure u,, . ;, are the same, i.e.
v* =y, .4, for all k > d*. The result now follows from this and (a). |

We now consider stationary gaussian processes. Without loss of generality we
can assume that all such processes have mean 0, since (2.7) is unchanged by a lo-
cation shift. We immediately note that if the covariance matrix of the components
X(t1),...,X(ta) is non-singular, then the joint distribution of X (¢;),..., X (t4)
has a bounded density with respect to d-dimensional Lebesgue measure and hence
Ut,,...t. = d. This shows that any gaussian process for which all finite-dimensional
joint distributions are non-singular is both time-length invariant and accessible
with v_ = oo. Thus we need only consider those cases where singularities arise
in some of the joint distributions; since these distributions are gaussian, a sin-
gularity corresponds to the existence of a non-trivial linear relation among the
components.

It will be useful here (and later when we look at coloured noise) to consider
the spectral decomposition of a general complex-valued second-order stationary
process (see, for example, Cramér & Leadbetter 1967). Let K(t) = E(X(s)X (s+
t)) denote the autocovariance function of the process. Under the weak restriction
that K (t) be continuous, we have the unique representation

K(t) = / P §(d), (2.11)
where S is the associated (non-normalized) spectral measure. The following two
lemmas (proofs can be found in Cutler (1994)) provide the needed results:

Lemma 2.1. Let X(t) be a second-order stationary (complex-valued) process
with continuous autocovariance K (t). If there exist time points ti,...,t, and
complex numbers a,...,an, (not all zero) such that 3°7_, a; X (t;) = 0 a.s., then
the associated spectral measure S is purely discrete.

Now any (complex-valued) second-order stationary gaussian process with mean
0, continuous autocovariance, and purely discrete spectral measure S, has the
representation

X(t)= > cxne?™'Z, as, (2.12)
AREA
where A is the set of atoms of S, ¢ = S({\:}), and Z,, Z,, ... are orthogonal
(complex-valued) gaussian variables with mean 0 and variance 1. The sum on the
right-hand side of (2.12) is interpreted as a limit in quadratic mean.

Lemma 2.2. Let X(t) be a complex-valued second-order stationary process
with mean 0 and purely discrete spectral measure S. Let |A| denote the number
of atoms of S.

(a) If |A| = n, then every collection of k > n+ 1 components X (t,),..., X (t)
is linearly dependent.

(b) If |A| > n, then for every T > 0 and every sequence of partitions {Pp, }m
of [0, T for which the mesh AT — 0, there exists mq such that, for all m > m,,
P, includes n distinct time points ti,...,t, (which may vary with m) for which
X(t1),...,X(tn) are linearly independent.

Phil. Trans. R. Soc. Lond. A (1994)
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A theory of correlation dimension for stationary time series 349

As every real-valued stationary gaussian process with continuous paths has a
continuous autocovariance function, it follows from the preceding lemmas and
earlier discussion that:

Theorem 2.2. Every real-valued stationary gaussian process with continuous
paths is time-length invariant and accessible with respect to correlation dimen-
sion. If the spectral measure of the process is purely discrete with exactly d atoms,
then v = d. In all other cases v, = 0.

Remarks. (1) Note that spectral theory allowed us to completely determine
correlation dimension in the gaussian case. This is partly due to the fact that
singularities in gaussian distributions are always reflected in the linear structure.
We would not expect such complete success using spectral analysis with general
stationary processes.

(2) Since every bounded Borel measure S is the spectral measure of some
stationary gaussian process, we may choose S to be continuous with a high-
frequency cut-off S({\||A| > Ao}) = 0. In this case v_ = oo, but the process has
paths which are infinitely differentiable, and the Hausdorff dimension of a graph
of a realization of the process is a.s. 1.

(3) A gaussian process comprised solely of d harmonic components has finite
correlation dimension d, and any single realization of the process is completely
predictable once d (linearly independent) observations have been obtained. How-
ever, the solution for one realization is a.s. not valid for any other realization,
nor can it be used to predict limiting behaviour and occupation probabilities for
other realizations. This situation corresponds to the projection of an (unbounded)
d-dimensional dynamical system with uncountably many distinct simple attrac-
tors. Note that graphs of the process are periodic or almost periodic and a.s. have
Hausdorff dimension 1.

3. Dimension analysis of gaussian power-law coloured noise

In this section we use the real form S* of the spectral measure S, i.e. S*([0,\]) =
S([=A, A]). In this case the autocovariance is expressed as

K(t) = / cos(At) S*(dN). (3.1)
0

The original intent of OP appears to have been to estimate the correlation di-

mension of a process with (real) spectral density f*(\) of the form

) =dS*/dd=Xx"* for A >0, where a>1. (3.2)

Of course to maintain integrability of f* we require a low-frequency cut-off Ay on
the power law; hence the range in (3.2) should be A > Ao. Any integrable function
can be inserted over (0, Ag).

Since (3.2) corresponds to a continuous spectral measure, our earlier work gives
v_ = oo for any gaussian process following this model. OP, however, approached

oo

the problem numerically through the GP algorithm and (1.3), and consistently

obtained the value v{¥) = 2/(a — 1) for 1 < a < 3. Various explanations of this
phenomenon have been attempted, and a particularly insightful discussion can be
found in Theiler (1991). Here we examine the problem from a different point of

Phil. Trans. R. Soc. Lond. A (1994)
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view, consistent with the approach taken in §2. We conclude that it is important
to distinguish the discrete spectrum simulation method of OP (discussed below)
from the continuous spectrum model (3.2); in the latter case, we argue that
both low and high frequencies have a role to play in determining the sample size
necessary to find a correct scaling region for the sample correlation integral. We
also give a new interpretation of the magic number d(a) = 2/(a — 1) as the
correlation dimension of a conditional distribution p* in the discrete spectrum
model.

Any strictly stationary process X (t) with continuous paths (this includes deter-
ministic outputs) and invariant distribution p can be represented as a functional
of a shift dynamical system on C([0,00)). For each ¢t > 0, the left-shift operator
L, :C([0,00)) — C([0,00)) is defined by

Li(z)(s) = z(s + t). (3.3)
The mappings {L;};, t > 0, form a semigroup on C([0,00)), and it follows that
pL;' = p for every t > 0 as a consequence of stationarity. Hence ({L;}:, u)

defines a stationary dynamical system evolving on C([0, 00)) with random initial
conditions X € C([0,00)) selected according to u. The original process X (t) is
recovered by projecting L;(X) down to its zeroth coordinate:

X(t) = Li(X)(0). (3.4)

Since ({L:}:, ) is a dynamical system, the usual definitions of ergodicity and
mixing apply. (Note that if X (¢) is a functional of a finite-dimensional dynamical
system in IR? then ({L;};, u) will be ergodic whenever the original d-dimensional
system is ergodic.) The significance of this approach is seen in the following
theorem.

Theorem 3.1. Let X(t) be strictly stationary on C(|0,00)) with invariant
distribution p.

(a) Suppose that ({L;},,p) is ergodic. Let 7 > 0 be fixed, and define the
discrete-time embedded process { X,.}, in IR* by X,, = (X(n7), X((n+ 1)7),...,
X((n+d—1)7)) forn =1,2,.... Let C,(r) be the sample correlation integral of
Xi,..., X, as defined in (1.2). Then, for almost all choices of 7, lim,,_,, C,(r) =
Ci(r) a.s. where [i = i, o, a- Is the distribution of X, in IR%.

(b) If X (t) is gaussian, then the dynamical system ({L;};, p) is ergodic if and
only if the real spectral measure S* of X (t) is purely continuous. (We then say
X(t) is ergodic.)

Proof. (a) The discrete-time embedded process will be ergodic provided no
multiple of 7 coincides with a period (should one exist) of the original process.
Part (a) then follows directly from the work of Pesin (1993), Serinko (1993a),
and Aaronson et al. (1993). Serinko’s work is more complete in this context
as his method works for all » > 0 without any continuity assumptions on the
distribution p., . g4,. Part (b) is an old result, and can be found in Maruyama
(1949) and Grenander (1950). See also Cramér & Leadbetter (1967) and Cornfeld
et al. (1982) for discussions. ]

It follows from Theorem 3.1 that the embedding method, applied to a single
realization of a continuous-spectrum gaussian process, yields the desired limit
lim,, .0 Cy (1) = Cy(r) for each d > 1. Moreover, we know from Lemma 2.1 that

Phil. Trans. R. Soc. Lond. A (1994)
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B = lr2r,. dr 1S @ non-singular gaussian distribution, and hence Cy(r) ~ cr? for
sufficiently small . This is consistent with the theoretical calculations of Theiler
(1991), who observed a range of small r with the correct scaling C,(r) ~ cr? for
very large n in a continuous power-law model of the form (3.2). There are two
distinct factors influencing the size of n necessary to observe the correct scaling.
The statistical effect (i.e. the slowing of convergence of C,,(r) to Cz(r) due to the
dependence structure between the vectors X, ..., X,,) is a function of the mixing
behaviour of the process. In gaussian processes, a necessary and sufficient con-
dition for ordinary mixing is that lim; ., K(¢) = 0. Uniform mixing conditions
(see Denker & Keller (1986) and Serinko (1993b) for examples and applications)
are likely necessary to get rates near optimal. Since mixing in gaussian processes
is determined by the tail behaviour of K(t) (hence by the behaviour of S* near
0) we see that the statistical effect increases as the power at very low frequencies
increases. This phenomenon has been noted by Theiler (1986, 1991) who recom-
mends modifications to the sample correlation integral to improve convergence.
In the case of dependencies which persist over long time periods, we suggest that
repeated independent sampling of the vector X = (X(7),...,X(dr)) be substi-
tuted (when possible) for the GP algorithm. The second factor influencing scaling
behaviour is the geometric effect induced by the degree of path smoothness (i.e.
by the degree of dependence between components within the vector X). The
smoothness of gaussian paths depends on K (t) at t near 0 (i.e. on the tail of
S*) so the geometric effect is reduced when sufficient power exists at arbitrar-
ily high frequencies. When paths are very smooth, X(7),...,X(dr) are strongly
statistically correlated for small 7 and the distribution p,, 4. in JR* appears low-
dimensional from a distance. The correct scaling Cy(r) ~ cr? is then observed
only for small r, and larger n is required for C,(r) to exhibit correct scaling at
small r, even assuming independent X, ..., X,,. (In practice this effect may be
lessened somewhat by a good choice of the time delay 7.) Note that the worst-
case scenario for an ergodic gaussian process corresponds to a continuous spectral
measure with small high-frequency cut-off (very smooth paths) and a lot of power
near 0.

OP attempted to simulate a process with spectral density (3.2) by first choosing
a small frequency increment A\ and approximating (3.2) by the discrete power-
law distribution

S*({kAN}) = C(kAN)™(A)) for k=1,2,3,..., (3.5)

where C is a normalizing constant chosen to yield unit variance K (0) = 1. They
then simulated a process with spectral distribution (3.5) by generating random
uniform phases (but noted that gaussian models could be used as well). The real
representation of a gaussian process with general discrete real spectral distribu-
tion S* is given by

X(t) = Z ¢k (Ag cos(Axt) + By sin(Agt)), (3.6)
Ak EA*

where A* is the set of atoms of S*, ¢; = S*({\«}), the Ags, Bys are IID real
gaussian variables with mean 0 and variance 1, and the sum in (3.6) converges
in quadratic mean. Substituting (3.5) into (3.6) yields the gaussian power-law
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process

X, (t) = CY2(AN)Y? i (k AXN)™*/2(Ag cos(k AXt) + Bysin(k AXt)).  (3.7)

k=1

We note that X,(t) is also a.s. a continuous periodic function (not just a limit
in quadratic mean; see Kahane (1985) for continuity results on random Fourier
series) with period 27/(A\), and so (3.7) directly defines random elements of
C([0,00)). OP then sampled the process over the interval (0,27 /(A))) at equally
spaced timepoints t, = kAt, k = 1,...,m. For simulation purposes, and to
avoid the aliasing of high frequencies, the sum in (3.7) was truncated at k =
%m. The GP algorithm was subsequently applied to the sampled trajectory
Xo(t1)y ooy Xa(tm)-

We will need to modify the above set-up slightly so that various convergence
issues are not confused. First note that (3.7) is not changed in any fundamen-
tal way by taking C = AX = 1, and we do so throughout the following. The
phase space then becomes C,_, the set of all continuous functions with period 2,
equipped with the uniform topology and norm || ||,, of (2.4). We also assume that
the sum in (3.7) has not been truncated, that At remains fixed (chosen so that
no integer multiple of At coincides with 27), and that we let m — oo over several
periods of the process. Note that the discrete nature of the spectrum would have
become apparent had OP continued sampling over several periods.

Since (3.7) is a discrete spectrum gaussian model, the invariant distribution
 is not ergodic and Theorem 3.1(a) does not apply directly. However, we can
decompose p into its ergodic components and apply Theorem 3.1(a) to each
component. Note that each initial condition z € C,, belongs to the basin of
attraction (under the left-shift operators L;) of exactly one ergodic component,
say u®. Since C,(r) is computed, for each d, by embedding over left-shifts of the
same realization z, it follows that, given x, lim,,_,o C,(r) = Cp=(r) p®-a.s., where
B® = W, 4,4, Lhus, given z, we will have

log C,
T < S SR

where v/, is the correlation dimension of the conditional distribution uf ., .

11111

OP observed vi¥(z) ~ d(a) = 2/(a — 1), independent of z, for 1 < o < 3 and
sufficiently large d.

We now show that d(a) is p-a.s. the correlation dimension of each ergodic
component u® over [0,27] (interpreted in the sense of (2.5) and (2.6), with T =
2m); moreover, it is also u-a.s. the Hausdorff dimension of the support M?® of
p® in Cor. Define 4* : [0,27] — Cor and M® C Car by %*(s) = L,(z) and
M?* = 4*([0,27]). Since

[9°(s) = %" ()llar = sup |2(s +u) — z(t + u)| (3.9)
ou2nr
the continuity of z shows that ¢* is continuous, and so the image M? is compact,
hence closed, in Cy, in the uniform topology. This closure property is directly
related to the lack of ergodicity in the periodic model; the set of shifts of z is a
closed invariant set and therefore not dense in any larger region.
It is quite easy to deduce the form of the conditional distributions u® by trans-
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ferring from rectangular coordinates (A, By) to polar coordinates (Rg, —¢y) in
(3.7). Then Ay = Rypcosy, By = —Rysindy, and (3.7), with C = AX = 1,

becomes

Xa(t) =Y k™**Ry cos(¢y + kt). (3.10)

k=1
The ¢s are 11D uniform variables over [0, 27], independent of the radii Rys. We
see from (3.10) that shifting a realization by s units only involves shifting angles

Ly(X,)(t) = i k=2 Ry, cos((¢y + ks) + kt). (3.11)

k=1

Since any set of shifted angles ¢; + s, d2 + 28, ..., ¢ + ks, ... (addition mod 27)
is just as likely as the set @1, ¢o,... under the uniform distribution, we see that
all shifts of = are equally likely. Hence p® corresponds to a ‘lifting’ of the uniform
distribution m from the circle [0, 27] to M?, i.e.

p(®([s,t])) = m([s,t]) = (t —s)/2r for 0< s <t 2m. (3.12)

Now from Kahane (1985, p. 199), the paths of (3.7) p-a.s. satisfy a Lipschitz
condition almost of order 1/d(a) for 1 < a < 3, i.e. for pu-almost all z we have

[97(s) =¥ (D)llzx = sup |a(s+u) —z(t+u)| = O(lt — 5|~ V/2/log [t — s|71).

oLu2n

(3.13)
A slightly less exact result (a Lipschitz condition of order 3 for every 8 < 1/d(a))
can be deduced from (3.5) and Theorem (ii), p. 181, of Cramér & Leadbetter
(1967). This less exact result is sufficient for our purposes. Applying standard
dimension techniques (see Proposition 2.1 and Theorem 16.2 of Falconer (1990)),
we conclude that dim(M?*) = dim(¢*([0,27])) < d(a) p-a.s., where dim(M?*)
is the Hausdorff dimension of M?® under || ||,,. Similarly, if ¥*(S) and %*(T)
are IID observations from p?, it follows from (3.12) and (3.13) that, for each
0 < B <1/d(a), there exist 0 < C < oo and 0 < ¢ < oo such that

Po([[47(S) = ¢ (T)llex < 7]) = m xm({(s,) |Clt = s” <r}) ~er'/? (3.14)

for small r. Hence we must have v? < d(a) p-a.s. The reverse inequalities can
be obtained by applying the potential theory methods of Frostman; see Cutler
(1994).

Our discussion in this section shows that we will observe the OP phenomenon
in every non-ergodic system for which the trapping invariant subspaces (or at-
tractors) of the ergodic components have dimension strictly smaller than the
dimension of the invariant measure. This behaviour occurs whether the system
is finite-dimensional (see examples below) or infinite-dimensional (as in the case
of coloured noise). In ergodic systems with poor or no mixing properties (weakly
ergodic systems) we may observe a transient OP phenomenon; the sample cor-
relation integral exhibits a significant region of low-dimensional scaling in the
(n,r)-plane, while the correct scaling is obtained at small r for sufficiently large
n (see Example 3.3).

Ezample 3.2. Consider two harmonic oscillators with commensurate frequencies
d*y/dt®* + N2y =0, d%2/dt* +4X\’2 =0 (3.15)
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Figure 1. Log-log plots of sample correlation integral for the circle map. (a) a = 0.1; (b)
a = 0.101013.

with amplitudes R; = R, = 1 and random independent phases ¢, ¢, uniformly
distributed over [0,27]. Solving (3.22) in first-order form yields y:(t) = y(t) =
cos(At + ¢1), y2(t) = ¥/ (t) = —Asin(At + ¢1), and 2 (t) = 2(t) = cos(2At + ¢2),
25(t) = 2'(t) = —2Asin(2\t + ¢,). Each system describes an ellipse in IR? and has
an invariant distribution absolutely continuous w.r.t. one-dimensional Lebesgue
measure on the ellipse. The product system therefore has invariant distribution
absolutely continuous w.r.t. two-dimensional Lebesgue measure on a torus. How-
ever, each realization z(t) = (y1(t),y2(t), z1(t), 22(t)) generates a simple closed
curve in IR*, i.e. the closed support of each ergodic component is one-dimensional.
Dimension measurements made on any functional of one realization of such a
system will always yield local subspace estimates of 1 or less. Takens’s theorem
is sometimes said to ‘fail’ here, but in fact the failure is that of the GP algo-
rithm, not the theorem. Dimension analysis on independent embedded vectors
X, = (h(z(7)),...,h(x(d7))) will yield the correct answer for sufficiently rich h
and small 7.

Ezample 3.3. The simple circle map T(z) = (z+ o) mod 1 for 0 <z < 1is an
example of a discrete-time dynamical system which exhibits the OP phenomenon
for rational o (the non-ergodic case) and a transient OP phenomenon for irra-
tional a (the weakly ergodic case). This is somewhat similar to the behaviour of
power-law coloured noise in the cases of discrete and continuous spectra respec-
tively. Note that the uniform distribition on [0, 1] is always an invariant distribu-
tion for T' (for any choice of @). In the case that o is rational, the ergodic compo-
nents are discrete uniform distributions over periodic cycles (z,z+a, ...,z +ka)
of finite length, and the local dimension is 0. Figure 1la shows a plot of log C,(r)
against logr (embedding dimension d = 1) for 1000 observations from a realiza-
tion of this system with o = 0.1. In the case of irrational «, the system is ergodic
but not mixing. Figure 1b shows the analogous log-log plot for n = 1000 and
a = 0.101013.... The plateau in the graph of (b) represents the transient OP
phenomenon.
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